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Final Project Report – ParaBurst 

 

This report outlines the results, details and findings of our final project – ParaBurst. It is an 

application that analyzes photos taken in a burst mode and returns the best photo based on eye 

state detection using highly parallel algorithms. 

We managed to implement a parallel version of the Viola-Jones algorithm for (face detection) 

optimized to run GPU. Further, a simple algorithm was used to detect the state of eyes (open or 

closed) and return the best image in a burst. 

 

Section A – Viola-Jones algorithm for Face Detection and its Parallelization 

 

i. A brief overview of the Viola-Jones Algorithm 

 

Given below is a diagram giving the outline of the Viola-Jones Algorithm: 

 

 
 

Figure 1: Outline of the Viola Jones Algorithm 

 

 

 

 Pre-processing: The preprocessing phase sets up an image for running the 

classifiers. This stage includes parsing the image, converting it to Grayscale and 

finally down-sampling the image for face detection. 

 

 Running the Sliding window: The sliding window is a fixed window of size 24x24 

that traverses the image pixel by pixel and runs certain filters on the image area it 

covers. These filters reveal some features which can later be used to classify the 

region as a face or non-face. 
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Figure 2: The sliding window 

 

 

 Haar Filters: The sliding window applies multiple filters called to the image region 

it bounds. These filters are called Haar Filters and reveal horizontal and vertical 

features in the image. A Haar-like feature considers adjacent rectangular regions at 

a specific location in a detection window, sums up the pixel intensities in each 

region and calculates the difference between these sums. This difference is then 

used to categorize subsections of an image.   

 

 
Figure 3: A few Haar Filters 

 

 Cascade Classifier: A bunch of Haar-like features are compiled into a single large 

classifier, which is applied to each sub-window. At each step, the algorithm 

classifies a sub-window using a specific feature. If the sub-window meets the 

criteria then the algorithm proceeds with applying other features, otherwise, the 

sub-window is rejected. Intuitively, at each stage, the algorithm compares the 

values against tested classifiers and asks Does this feature resemble a facial 

feature? Earlier stages are easier whereas later stages extremely computationally 

intensive and more difficult to meet the criteria. 
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Figure 4: The Haar Cascade Classifier 

 

ii. Approaches to Viola Jones Alorithm 

 

a) Sequential Approach 

 

The sequential approach involved writing the Viola-Jones Face detection 

algorithm. In order to analyze the best-case performance of the program on a single 

CPU, we made a few optimizations without using parallel primitives. These 

optimizations proved to be helpful in the later stages of GPU-based development 

as well.  

 

 Instead of using the standard Haar classifier that consists of a large number of 

cascade classifications, we used a small yet tested subset of the classifiers. This 

ensured that for any given subwindow, our Haar cascade classifier involved a much 

smaller hierarchy. 

 

 An analysis of our CPU code showed that a large percentage of overall time was 

spent on computing sum of pixel intensities for each sub window. After some 

research, we found a better way is to compute the integral image (Described later). 

 

b) Naïve Parallization using OpenMP 

 

We added OpenMP primitives to speed up our program but the performance gain 

was not a lot. The primary reason is the dependencies between stages in a cascade 

classifier - the algorithm proceeds to the second stage if and only if the first 

classifier’s result is a success. Furthermore, the computations involved at each stage 
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are not same and in fact, they differ by a high margin between the first few stages 

and the stages applied towards the later stages.  We then decided that CUDA might 

be the best approach. 

 

c) Using CUDA  

 

The algorithm comprises of computing hundreds of features over a lot of 

independent sub windows, which is characteristic of a SIMD application. In order 

to implement SIMD and utilize the GPU in parallel, used NVIDIA’s CUDA 

library. 

 

1. The simplest approach just involved parallelizing over all the stages of the 

cascade classifier. In the sequential version, the cascade classifier involved 

a dependent execution i.e. the second stage was applied only if the first was 

a success. On CUDA, we parallelized over all stages in a sub window. 

While this reduced dependencies, this caused a lot of unnecessary 

processing. In most cases, later stages were not even required as those 

regions were rejected by the first few stages. The face in an image is only a 

small part and by computing all the stages, we did not achieve the desired 

speedups. Furthermore, this only parallelized one part of the algorithm. 

 

2. The second and our current approach parallelized over the sub windows. 

As a recap, the Viola-Jones algorithm has a moving sub window over the 

entire image, and all the classifications and computations are done within a 

given sub window at a specific time. The sequential version involved 

processing one sub window at a time, and then moving on to the next.  

 

 
Figure 5: The Sliding Window 

 

We divide the image into equal rectangular regions and each region gets 

mapped to a CUDA thread block, and each thread is responsible for one sub 
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window. Note that we check the image size before dividing into regions 

since an extremely scaled down image doesn’t warrant performing on 

further several small regions. After testing and analysis, we determined that 

128 threads/block provides the optimum execution times. Since the Viola-

Jones algorithm involves scaling the image down by a predetermined factor, 

the number of thread blocks required grow less as the image undergoes 

more scaling. Due to scaling, we also launch our CUDA kernel for each 

downsize of the image. Our findings showed that the smallest down 

sampled images take a very short span of time and do not affect overall time. 

Therefore, CUDA effectively helps us parallelize over the whole image 

using sub windows.  

 

 
Figure 6: Sub-window Parallelization 

 

This approach gave us a high speedup compared to previous 

implementations yet we found a few bottlenecks. Primarily, all the threads 

relied on Haar-like features, which were stored on the global memory. In 

other words, all threads compare their computed data against the Haar-like 

features to determine whether the feature corresponds to a face or not. Since 

all threads at least access the first feature from the global memory (some go 

on to access a lot more features if they are in the region comprising the 

face), the latency is quite high. To hide latency, we put the Haar-like 

features in the shared memory (100x lower memory latency1). As another 

memory optimization, we used memory coalescing to send the Haar-like 

features from global memory to shared memory by exploiting the fact that 

all features are stored in contiguous memory locations.  

This allows us to achieve the optimum global memory bandwidth since all 

threads in a thread block are trying to load the Haar-like feature from 

consecutive memory locations in the global memory2. 

                                                           
1 https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc 
2 http://stackoverflow.com/questions/5041328/cuda-coalesced-memory 

http://stackoverflow.com/questions/5041328/cuda-coalesced-memory
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d) Using OpenCV’s GPU library 

 

We implemented a final version to compare performace using OpenCV’s GPU 

library with inbuilt CUDA bindings. This was only used as a reference 

implementation. 

 

iii. A comparison of Results 

 

We finally tested and compared our results for the various approaches we used. 

 

Here is a quick comparison of the runtimes of the 3 versions on the same image: 

 

 
Figure 7: A comparison of the 3 implemented versions of Viola Jones 

 

 

 

 

We observed a speedup of 1.8x from the sequential version and approximately a 3.8x 

speedup using the OpenCV GPU libraries. 
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Given below is a graph of the performance of the 3 algorithms on images with different 

number of Faces. As the number of faces increases the computation intensity also increases 

as we have to go through all stages of the classifier or multiple face regions. 

 

 

 
Figure 8: A comparison of the 3 implemented versions of Viola Jones 

 

Even after trying multiple parallelization techniques, we could not beat the OpenCV GPU 

implementation. This is because: 

 

 The openCV GPU library is highly optimized and performs the preprocessing 

stages much faster than our versions. These include – computing the integral image 

and downsampling the images. 

 

 The OpenCV GPU library manages to change 2D representations of the image to 

one dimensional representations for GPU much faster and in a more optimized way 

than we do. It uses better indexing techniques than the one we used. 

 

Another thing to note is that we only used a subset of haar classifier in our implementations 

and not the entire set. Hence the accuracy of the OpenCV GPU implementation was also 

much higher i.e. around 72% compared to 51% of our implementation when run on selected 

images. 
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Section B – Open Eye State Detection 

 

i. The Algorithm  

 

Once we managed to get the coordinates for Face and eyes from the Viola Jones algorithm, 

we used a simplistic approach to detect open eyes on multiple images. This approach was 

inspired a research paper3.  

 

The algorithm is simple for each eye region detected in the image, it calculates the mean 

and standard deviation of normalized pixel values. It then compares these values to certain 

threshold values and classifies it as “open” or “closed”. 

 

 
Figure 9: Eye State Detection Algorithm 

 

We find the eye coordinates for one image in the burst.  

 

Then we use these eye region co-ordinates for all images in the burst and classify eyes as 

open or closed. Finally the image with the most number of open eyes is returned as the 

BEST image. 

 

ii. Attempts to Parallelize Eye State Detection 

 

 Naïve Parallelization: Initially we attempted a simple parallelization approach 

using parallel for loops with Pragma OMP. However we noticed a significant 

slowdown of around 200-300ms when using parallized for loops attempting both 

dynamic and static scheduling. After further testing and reasoning we realized that 

we have at most 8-12 eye regions detected per image and computing the mean and 

standard deviation is a simple computation for eye regions not spanning more than 

50x50 image regions. Hence the scheduling overhead on the CPU was 

compromising performance! 

Hence we decided to stick to the simplistic sequential approach. 

 

                                                           
3 http://www.ajer.org/papers/v4(01)/F0401043048.pdf 

http://www.ajer.org/papers/v4(01)/F0401043048.pdf
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 Using the GPU: Having already used GPU to speed up viola jones algorithm we 

considered parallelization using the GPU and cuda. However since the naïve 

parallel version showed no improvement, we reasoned that the overhead of 

communication with the GPU might once again compromise performance. And 

again as the eye regions were small it made sense to stick to the CPU for such 

simplistic computations. 

 

 

Figure 10: With v/s Without OpenMP (40 images) 

 

 

 

Figure 11: With v/s Without OpenMP (19 images) 



15-418 ParaBurst Tanay Varma & Mohak Nahta 

 

 

Section C – Other Optimizations 

 

Within the Viola-Jones algorithm, we had to calculate the sum of pixel values in multiple boxed 

regions in the image when we use Haar filters for feature detection. Using a purely iterative 

approach to sum each pixel value in a box of size W*H, we would need to access W*H pixel 

values in the image. 

We know that the image’s pixel values do not change during the course of the face detection 

algorithm. Hence it made sense to calculate an “integral” image where the value of each pixel in 

the integral image is the sum of all pixel values to the top and to the left of the pixel in the original 

image. 

For instance: 

    

Now the sum of the region S can be calculated by S = D – B – C +A, where A,B,C, D is are the 

integral image values at location A, B, C, D. 

Thus with the integral image we need exactly 4 accesses to the integral image v/s W*H accesses 

to calculate the sum of a region. Computing the integral image at the beginning of the algorithm 

prevented memory accesses from becoming a bottleneck in our algorithm. 
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Section D – Results 

In this section, we present a few pictures highlighting the intermediate stages of the algorithm 

namely face and eye detection and show timings of running the entire application 

i. Face Detection Results  

 

     
Figure 12: A few Face detection Results 

 

ii. Full Algorithm Results with timing: 

 

Figure 13: A final comparison (Time in ms) 

Viola Jones is the main bottle neck where the CUDA version performs much better. However 

eye state detection is sequential. Here most of the difference in time is because of the viola jones 

implementations. 
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Section E – Limitations and Scope for Improvement 

Having completed this version of Para Burst, we analyze the limitations of our approach and look 

at further improvements we could make. 

i. Limitations: 

 

 Our Algorithm works solely on checking eye states and not other parameters like 

smile or lighting conditions. 

 

 Our approach is NOT invariant rotations. Sometimes if faces are tilted or turned 

the algorithm may fail to detect them. This is a result of using the Haar filters in 

the cascade classifier that are not rotation invariant. 

 

 There is some load imbalance in our CUDA implementation. For instance, a thread 

with a sub window without any facial feature might stop much before a thread with 

a sub window consisting of facial features; the latter will go through more stages 

of the cascade classifier.  

 

ii. Scope for improvement 

    

 Use additional parameters like smile, blur and movement to rate images in the burst and 

return the best image to the user. 

 

 We could improve speed by using a different classifier. Even during our implementation 

we discovered other classifiers like the linear binary classifier that is significantly faster as 

it has fewer classification stages but is slightly less accurate. 
 

 Further different classifiers with filters or methods that are rotation invariant would also 

help us get more accurate results as it would detect faces that are turned or tilted. 

 

 Using a more robust attempt for open eye detection which is more accurate in general 

compared to the approach we used just using mean and standard deviation. 

 
 

 Improve load imbalance problem in CUDA implementation by devoting idle threads to 

other computation-intensive tasks.  

 

 Lastly we use parameters for open eye detection based of literature values. We could 

further implement a machine learning algorithm that “trains” these parameters so that 

determining whether eyes are opened or closed becomes more accurate. 

 
 

 Our final goal is to integrate ParaBurst into a mobile or web app to make it easier and more 

practical to use. 
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